The crystal structure of the Mycobacterium tuberculosis Rv3019c-Rv3020c ESX complex reveals a domain-swapped heterotetramer.
نویسندگان
چکیده
Mycobacterium tuberculosis encodes five gene clusters (ESX-1 to ESX-5) for Type VII protein secretion systems that are implicated in mycobacterial pathogenicity. Substrates for the secretion apparatus are encoded within the gene clusters and in additional loci that lack the components of the secretion apparatus. The best characterized substrates are the ESX complexes, 1:1 heterodimers of ESAT-6 and CFP-10, the prototypical member that has been shown to be essential for Mycobacterium tuberculosis pathogenesis. We have determined the structure of EsxRS, a homolog of EsxGH of the ESX-3 gene cluster, at 1.91 Å resolution. The EsxRS structure is composed of two four-helix bundles resulting from the 3D domain swapping of the C-terminal domain of EsxS, the CFP-10 homolog. The four-helix bundles at the extremities of the complex have a similar architecture to the structure of ESAT-6·CFP-10 (EsxAB) of ESX-1, but in EsxRS a hinge loop linking the α-helical domains of EsxS undergoes a loop-to-helix transition that creates the domain swapped EsxRS tetramer. Based on the atomic structure of EsxRS and existing biochemical data on ESX complexes, we propose that higher order ESX oligomers may increase avidity of ESX binding to host receptor molecules or, alternatively, the conformational change that creates the domain swapped structure may be the basis of ESX complex dissociation that would free ESAT-6 to exert a cytotoxic effect.
منابع مشابه
Structure of a PE-PPE-EspG complex from Mycobacterium tuberculosis reveals molecular specificity of ESX protein secretion.
Nearly 10% of the coding capacity of the Mycobacterium tuberculosis genome is devoted to two highly expanded and enigmatic protein families called PE and PPE, some of which are important virulence/immunogenicity factors and are secreted during infection via a unique alternative secretory system termed "type VII." How PE-PPE proteins function during infection and how they are translocated to the...
متن کاملComparison of multiplex and ordinary PCR for diagnosis of paratuberculosis and tuberculosis in blood samples (buffy coat) of cattle and buffaloes
Background: Paratuberculosis and tuberculosis (TB) caused by Mycobacterium avium paratuberculosis (MAP) and Mycobacterium tuberculosis complex (MTC), respectively are economically important, chronic debilitating diseases affecting the dairy herds and are also potential zoonotic threats. Aims: Differential diagnosis of paratuberculosis and TB i...
متن کاملComparative Genomics and Proteomic Analysis of Four Non-tuberculous Mycobacterium Species and Mycobacterium tuberculosis Complex: Occurrence of Shared Immunogenic Proteins
The Esx and PE/PPE families of proteins are among the most immunodominant mycobacterial antigens and have thus been the focus of research to develop vaccines and immunological tests for diagnosis of bovine and human tuberculosis, mainly caused by Mycobacterium bovis and Mycobacterium tuberculosis, respectively. In non-tuberculous mycobacteria (NTM), multiple copies of genes encoding homologous ...
متن کاملSolution Structure of the Mycobacterium tuberculosis EsxG·EsxH Complex
Mycobacterium tuberculosis encodes five type VII secretion systems that are responsible for exporting a number of proteins, including members of the Esx family, which have been linked to tuberculosis pathogenesis and survival within host cells. The gene cluster encoding ESX-3 is regulated by the availability of iron and zinc, and secreted protein products such as the EsxG·EsxH complex have been...
متن کاملThe Type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis.
The ESX-1 secretion system is a major determinant of Mycobacterium tuberculosis virulence, although the pathogenic mechanisms resulting from ESX-1-mediated transport remain unclear. By global transcriptional profiling of tissues from mice infected with either wild-type or ESX-1 mutant bacilli, we found that host genes controlled by ESX-1 in vivo are predominantly IFN regulated. ESX-1-mediated s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Protein science : a publication of the Protein Society
دوره 19 9 شماره
صفحات -
تاریخ انتشار 2010